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Abstract
Most large-scale storage systems employ erasure coding to provide resilience

against disk failures. Recent work has shown that tuning this redundancy to changes
in disk failure rates leads to substantial storage savings. This process requires code
conversion, wherein data encoded using an [nI, kI] initial code has to be transformed
into data encoded using an [nF, kF] final code. Convertible codes are a class of codes
that enable efficient code conversion while maintaining other desirable properties.
In this thesis, we focus on the access cost of conversion (corresponding to the total
number of symbols accessed in the conversion process) and on an important subclass
of conversions known as the merge regime (corresponding to combining multiple
initial codewords into a single final codeword).

In this setting, explicit constructions are known for systematic access-optimal
Maximum Distance Separable (MDS) convertible codes for all parameters in the
merge regime. However, the existing construction for a key subset of these parameters,
which makes use of Vandermonde parity matrices, requires a very large field making
it unsuitable for practical applications. In this thesis, we provide (1) sharper bounds
on the minimum field size requirement for such codes, and (2) explicit constructions
for low field sizes for several parameter ranges. In doing so, we provide a proof of
super-regularity of specially designed classes of Vandermonde matrices that could be
of independent interest.
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Chapter 1

Introduction

Erasure codes serve as a cornerstone of modern large scale distributed storage systems as a means
to mitigate data loss in the event of disk failures. In this context, erasure coding involves dividing
data into groups of k chunks that are each encoded into stripes of n chunks using an [n, k] erasure
code. These encoded chunks are then stored across n distinct storage nodes in the system. The
code parameters n and k determine the amount of redundancy added to the system and the degree
of durability guaranteed.

There are various classes of codes that are frequently used in real-world systems. For example,
systematic codes are those in which the original message symbols are embedded among the
code symbols. This is highly desirable in practice as in the event that there are no observed
disk failures, there is no decoding process needed to recover the original data. Systematic codes
with Vandermonde parity matrices (see §2.1) are even more advantageous as there are known
efficient algorithms utilizing Fast Fourier Transform (FFT) for computing the product between
vectors and Vandermonde matrices [5, 12], speeding up the encoding process. This attribute is
becoming increasingly important given the recent trend to use wider (high k) and longer (high n)
erasure codes [6, 10]. Additionally, Maximum Distance Separable (MDS) codes are a subset of
erasure codes that require the least amount of additional storage in order to meet a specific failure
tolerance. An [n, k] MDS code can tolerate loss of any n− k out of the n code symbols. In this
thesis, our interest is on systematic MDS codes with Vandermonde parity matrices.

Recent findings by Kadekodi et al. [9] reveal the dynamic variability in disk failure rates over
time due to changes in data usage patterns and hardware reliability. Their research highlights
the potential for meaningful savings in storage and associated operational expenses through
tuning code parameters to observed failure rates. However, the resource overhead associated with
the default approach of re-encoding all of the data in order to modify n and k is prohibitively
expensive [15].

The code conversion problem introduced in [15] formalizes the problem of efficiently trans-
forming data that has been encoded under an [nI, kI] initial code CI to its new representation
under an [nF, kF] final code CF . One of the key measures of the cost of conversion is the access
cost, which represents the total number of code symbols accessed (read/written) during conversion.
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Convertible codes [15] are a class of codes that enable efficient conversion while maintain-
ing other desirable properties such as being MDS and systematic (more details in §2.2).

Among various types of conversions, the merge regime, where kF = λkI for any integer λ ≥ 2
(i.e., combining multiple initial codewords into a single final codeword), is the most important one.
First, the merge regime requires the least resource utilization [17] among all types of conversions
and hence are a highly favorable choice for practical systems. Second, constructions for the merge
regime are key building blocks for the constructions for codes in the general regime which allows
for any set of initial parameters and any set of final parameters [17]. In this thesis, our focus is on
systematic MDS convertible codes in the merge regime.

In [15], the authors established lower bounds on the access cost of conversion and provided
constructions of access-optimal convertible codes for all parameters in the merge regime. Let us
denote rI := nI − kI and rF := nF − kF, (which correspond to the number of parity symbols in
the initial and final codes if the codes are systematic). For cases where rI > rF (i.e., when the
initial configuration has more parities than the final configuration),the authors provide explicit
constructions of systematic MDS access-optimal convertible codes over fields of size linear in nF.
For cases where rI < rF (i.e., when more parities are needed in the final configuration than in the
initial), it was shown that the access cost of conversion for MDS erasure codes is lower bounded
by that of the default approach to decode and re-encode all of the data. As a consequence, it is not
possible to realize any savings with specialized code constructions.

However, in the case where rI = rF, the best-known construction requires a minimum field
size of pD for any prime p and some D ∈ Θ((nF)3) [15]. This field size is far too high for efficient
practical implementations. Most current instruction-set architectures are optimized to operate
on bytes of data at a time. Utilizing erasure codes defined over larger field sizes can hamper the
encoding/decoding speed. Hence most (if not all) practical implementations of storage codes
use F256 (which translates each field symbol to a one-byte representation). Thus, the problem of
constructing low-field-size access-optimal convertible codes remains open for the case rI = rF.

In this thesis, we study the setting of systematic MDS access-optimal convertible codes in
the merge regime in the case where rI = rF. Previously, the best known construction of codes
in this setting was a systematic code with a very specific choice of Vandermonde parity matrix
with a singular degree of freedom. In Chapter 3, we improve on this construction by allowing
more freedom in the choice of scalars of the Vandermonde matrix. We then study the minimum
field size, denoted q∗(k, r), required for existence of the underlying k × r super-regular Vander-
monde parity matrices of such codes (as will be detailed in §2.1). We establish the lower bounds
q∗(k, r) ≥ Ω(kr) (Theorem 1) and q∗(k, r) ≥ Ω(2r) (Theorem 2), with the latter bound pertaining
to codes over fields of characteristic 2 where k > r. The first bound is tighter for regimes where
k ≫ r, while the second bound is tighter when k ≈ r. Additionally, we establish an upper bound
q∗(k, r) ≤ O(kr) (Theorem 3), which in turn results in an improved upper bound q ≤ O((kF)r

F
)

on the field size required for the existence systematic MDS access-optimal convertible codes in
the merge regime in the case where rI = rF.
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Furthermore, in Chapter 4, we provide the first explicit low-field-size constructions of codes
in this setting for several parameter ranges via constructing their corresponding super-regular
Vandermonde parity matrices. The proposed construction makes use of field automorphisms in
designing the Vandermonde matrices. For any finite field Fq where q = 2w, we find explicit
constructions of k × 3 super-regular Vandermonde matrices for all k such that k < q (Theorem 4).
This, in turn, gives us a construction of systematic MDS access-optimal convertible codes for
all parameters in the merge regime such that rF = rI ≤ 3 and kF < q. We similarly resolve
the regime over any general prime power field Fq where q = pw, finding constructions of k × 3
super-regular Vandermonde matrices for all k such that k < w (Theorem 5).

These results are also of independent interest beyond the setting considered in this thesis as
systematic MDS codes with Vandermonde parity matrices serve as the base codes for bandwidth-
optimal convertible codes [14, 16] and have also been studied in various other settings [12, 19, 21].
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Chapter 2

Background and Related Work

Let us begin with an overview of important concepts and notation referred to throughout this
thesis, along with a literature review of previous related work.

2.1 Systematic MDS codes and Vandermonde matrices
An [n, k] linear erasure code C with generator matrix G ∈ M(F)k×n over a finite field F is said
to be systematic, or in standard form, if G = [Ik | P] where Ik is the k × k identity matrix and
P is a k × (n − k) matrix also known as the parity matrix. Let m be a message and c be its
corresponding codeword under C, where m = (mi)

k
i=1 and c = (ci)

n
i=1 are vectors of message

and code symbols, respectively. As m is encoded under C via the multiplication c = mTG, it
follows that ci = mi for all i ≤ k if C is systematic.

An [n, k] linear erasure code C is Maximum Distance Separable (MDS) if and only if every
k columns of its generator matrix G are linearly independent; in other words, every k × k
submatrix of G is non-singular [13]. As a result, data encoded by an [n, k] MDS code can
withstand any erasure pattern of n − k out symbols in any codeword and still successfully re-
cover the original data. If C is also systematic with parity matrix P, this is equivalent to the
property that every square submatrix of P is non-singular [13]. Such a matrix is also referred to as
super-regular. It is useful to note that any submatrix of a super-regular matrix is also super-regular.

A systematic code with a Vandermonde parity matrix P ∈ M(Fk×r) is one where P is of
the form 

1 1 . . . 1
ξ1 ξ2 . . . ξr
ξ21 ξ22 . . . ξ2r
...

... . . . ...
ξk−1
1 ξk−1

2 . . . ξk−1
r

 (2.1)

for some scalars ξ = (ξi)
r
i=1 ∈ Fr. Let us denote the above k × r Vandermonde matrix as Vk(ξ).

Such a matrix is not always guaranteed to be super-regular [13] and thus careful selection of the
scalars is required to ensure the resulting systematic code is MDS.

5



April 23, 2024
DRAFT

2.2 Convertible Codes [15]
Recall that a code conversion is a procedure that converts data from its initial representation
under an [nI, kI] code CI to its final representation under an [nF, kF] code CF . In order to capture
the potential change in dimension, let us denote M := lcm(kI, kF) and consider any message
m ∈ FM

q . This is equivalent to λI := M
kI

stripes in the initial dimension and λF := M
kF

stripes in
the final dimension. Let [i] := {1, 2, . . . , i} and let |S| denote the size of a set S. Let m[S] be
the vector formed by projecting m onto the coordinates in the set S, and let C(m) stand for the
encoding of m under the code C. Let rI := nI − kI and rF := nF − kF.
Definition 1 (Convertible Code [15]). An (nI, kI;nF, kF) convertible code over Fq is defined by:
(1) a pair of codes (CI , CF ) over Fq such that CI is an [nI, kI] code and CF is an [nF, kF] code;
(2) a pair of partitions PI := {P I

i | i ∈ [λI]} and PF := {P F
j | j ∈ [λF]} of [M = lcm(kI, kF)]

such that |P I
i | = kI for all P I

i ∈ PI and |P F
j | = kF for all P F

j ∈ PF; and (3) a conversion
procedure which, for any m ∈ FM

q , maps the initial set of codewords {CI(m[P I
i ]) | P I

i ∈ PI} to
the corresponding set of codewords {CF (m[P F

j ]) | P F
j ∈ PF} over the final code.

Recall that access cost during code conversion refers to the number of code symbols that
are read or written during conversion. Access-optimal convertible codes are those which meet
the lower bounds on access cost established in [15] that are known to be tight. It is known that
any (nI, kI;nF, kF) convertible code for the merge regime where rI = rF formed by a pair of
systematic codes with Vandermonde parity matrices PI = VkI(ξ) and PF = VkF(ξ) over the
same scalars is access-optimal [15]. This is due to PF being rF-column block-constructible from
PI; in other words, each new parity of a merged codeword can directly be computed as a linear
combination of the parities of the original codewords. If the parity matrices are super-regular, then
the resulting convertible code is guaranteed to be MDS as well. The best known construction of a
systematic MDS access-optimal convertible code for the merge regime where rI = rF is formed
by a pair of systematic codes with Vandermonde parity matrices over the scalars ξ = (θi−1)r

I

i=1,
for any primitive element θ ∈ F.

2.3 Additional Notation and Preliminaries
This section reviews terminology and notation used in this thesis that expands on the notation
introduced in [15].

For any two sets I, J , let I △ J denote the symmetric difference of I and J . For any two
integers a, b, let a ⊥ b denote that a and b are coprime. Let x denote the vector (xi)

r
i=1 for some

r. Let Mi,j denote the entry in the ith row and jth column of the matrix M, with both indices
1-indexed. Let MI×J denote the submatrix of M formed by the intersection of the rows indexed
by I and the columns indexed by J , with all indices 1-indexed. Let rowi(M) stand for the ith row
vector of the matrix M. Let χP be the indicator function for whether the proposition P is true.

Let Fp denote the prime field of size p, and let us reserve Fq for prime power fields of size
q = pw for some prime p and w > 1. Let F× denote the multiplicative group of the field, or
F \ {0}. Let ord(a) denote the order of an element a ∈ F×. Let F[x1, . . . , xr] denote the ring of
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polynomials in x1, . . . , xr over the field F. Let Aut(F) denote the group of automorphisms over
the field F. Let Sn denote the group of permutations of [n].

Recall that a field automorphism is a bijective map σ : F → F such that for all x, y ∈ F,
σ(x+ y) = σ(x) + σ(y) and σ(xy) = σ(x)σ(y); in essence, the map preserves the structure of
the field. Note also by definition, it must be the case that σ(0) = 0 and σ(1) = 1, which also
gives us that σ(−a) = −σ(a), σ(a−1) = σ(a)−1, and ord(a) = ord(σ(a)) for all a ∈ F×. It is
easy to verify that the set of fixed points of an automorphism form a sub-field of F, denoted the
fixed field of the automorphism. It is also a consequence of Galois theory that the fixed field of an
automorphism over the field Fq where q = pw is always an extension of the base prime field Fp

[4].

2.4 Related Work
The code conversion problem was first formulated in [15]. Previous work has yielded sev-
eral optimal constructions of convertible codes, including pairs of systematic MDS codes with
Vandermonde parity matrices, pairs of systematic MDS codes with parity matrices based on
Hankel arrays, pairs of low-field-size non-systematic access-optimal convertible codes, and so
on [11, 15, 17]. These constructions were analyzed under the lens of access cost, as defined in §2.2.

There also have been previous efforts to study the fundamental limits of existence of super-
regular Vandermonde matrices. Shparlinski provided an upper bound on the total number of
singular square submatrices of a Vandermonde matrix by showing that any (q − 1)×m Vander-
monde matrix Vq−1(ξ1, . . . , ξm) over the field Fq has at most 3(m − 1)(q − 1)mT

−1
m−1 singular

m×m square submatrices where T := mini ̸=j∈[m]ord(
ξi
ξj
); however, this bound has not shown to

be very tight upon closer investigation [12, 21]. Additionally, Intel’s Intelligent Storage Acceler-
ation Library (ISA-L), commonly used to implement erasure coding in practice, has published
bounds on the range of parameters [n, k] over F256 for which its code supports generation of
super-regular Vandermonde parity matrices, based on a very specific construction [8]. There is no
proof provided alongside these bounds as they were likely determined by running a code script to
test each submatrix for invertibility.

In addition, there has been independent work studying systematic linear MDS codes with various
other constructions of super-regular parity matrices. For example, it is known that a Cauchy
matrix C, that is, one of the form Ci,j = (ai + bj)

−1 for all i, j ∈ [n] given two vectors (ai)ni=1

and (bj)
n
j=1, is super-regular so long as the ai’s and bj’s are all distinct from each other [3, 18, 19].

Additionally, Lacan and Fimes introduced a construction of super-regular matrices formed by
taking the product of two Vandermonde matrices [12]. To add on, there has been considerable
progress in constructing super-regular Toeplitz matrices in the development of convolutional codes
[1, 2, 7]. Nonetheless, none of these alternatives are suitable for the construction of access-optimal
convertible codes.

To our knowledge, in this thesis we establish the best known bounds on the field size required for

7



April 23, 2024
DRAFT

the existence of systematic MDS access-optimal convertible codes for the merge regime where
rF = rI. We are also the first to provide, with proof, explicit constructions of systematic MDS
access-optimal convertible codes for the merge regime where rF = rI over practically usable field
sizes.
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Chapter 3

Fundamental Limits on Field Size

In this section, we study a new construction of systematic MDS access-optimal convertible codes
for the merge regime where rI = rF that generalizes the construction introduced in [15]. The new
construction is still based on systematic codes with super-regular Vandermonde parity matrices,
but we allow the scalars to take on any distinct nonzero values, rather than being restricted to
consecutive powers of a primitive element in the field. As detailed in §2.2, the new construction of
convertible codes is still access-optimal. Thus, a proof of the existence of any k × r super-regular
Vandermonde matrix yields (nI, kI;nF, kF = λkI) systematic MDS access-optimal convertible
codes for any λ ≥ 2, kF ≤ k, and rI = rF ≤ r.

We will establish both lower (Theorems 1 and 2) and upper (Theorem 3) bounds on the minimum
field size required for existence of systematic MDS codes with Vandermonde parity matrices by
studying super-regular Vandermonde matrices. We start with a result which provides a lower
bound on the field size required for the existence of such matrices. This result draws upon intuition
that an optimal choice of scalars for the Vandermonde matrix would avoid selecting elements with
smaller order to avoid repetition along the corresponding columns.
Theorem 1. Over the field Fq, for every divisor m of q − 1, for any r, k such that k > m, a k × r
super-regular Vandermonde matrix can only exist if q ≥ rm+ 1 ∈ Ω(kr).

Proof. Provided in ??.

The next lemma stems from the fact that finite prime power fields can be viewed as vector
spaces over their base prime fields and have a fixed dimension. This implies that any collection
of field elements larger than the field’s dimension must be linearly dependent. Over fields
of characteristic 2, this simply corresponds to a nonempty subset of elements that add to 0.
This lemma will later be used to identify a corresponding singular submatrix in a proposed
Vandermonde matrix and highlights the necessity of the linear independence of our selected
scalars for fields of characteristic 2.
Lemma 1. Over the field Fq, where q = 2w, for any r > w, for any S = {ξi}ri=1 ⊆ Fq, there must
exist some nonempty subset I ⊆ [r] such that

∑
i∈I ξi = 0.

Proof. Provided in ??.
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This results in another lower bound on the minimum field size required for the existence of
super-regular Vandermonde matrices specific to fields of characteristic 2.
Theorem 2. Over the field Fq, where q = 2w, for any r, k such that k > r, a k × r super-regular
Vandermonde matrix with distinct, nonzero scalars can only exist if q ≥ 2r.

Proof. Let q < 2r, and consider the k × r Vandermonde matrix Vk(ξ) for any distinct scalars
(ξi)

r
i=1 ∈ (F×

q )
r and r, k such that k > r. Then, it follows by Lemma 1, that ∃I ⊆ [r] nonempty

such that
∑

i∈I ξi = 0, and we must have |I| > 2 as the ξi’s are nonzero and distinct. Let us define
ℓ := |I| and (ci)

ℓ+1
i=1 ∈ Fℓ+1

q to be the coefficient vector of the polynomial f(x) :=
∏

i∈I(x− ξi)

such that f(x) =
∑ℓ+1

i=1 cix
i−1, and note by construction cℓ =

∑
i∈I ξi = 0. Now consider the

square submatrix H := Vk(ξ)J×I where J = [ℓ + 1] \ {ℓ}. If we take the linear combination
m = cℓ+1rowℓ(H) +

∑ℓ−1
i=1 cirowi(H), it follows that m = (f(ξi))i∈I = 0. As cℓ+1 = 1, this is a

nontrivial linear combination of the rows of H, and thus H is singular. Therefore, in order for the
matrix to be super-regular, we must have q ≥ 2r.

The first lower bound for general fields is a tighter bound in many popular settings such as
those which require wide codes, or very little storage overhead and thus k ≫ r. For the field F256,
for example, this bound tells us that [90, 86] and [58, 52] codes do not exist systematic MDS codes
with Vandermonde parity matrices. On the other hand, the second lower bound specific to fields
of characteristic 2 is more relevant in settings which demand narrow codes, such as storage in
unreliable environments. Again, for F256, this bound informs us that there do not exist systematic
MDS codes with Vandermonde parity matrices and more than 8 parities.

Finally, we will use the Schwartz–Zippel lemma[20, 22] to prove the existence of k × r super-
regular Vandermonde matrices over all fields of size greater than a threshold in terms of k and r.
We first start with a lemma to show that given any square submatrix H of a Vandermonde matrix,
if we compared it to the submatrix H′ formed by taking the row indices of H and “shifting" them
all upwards by the same amount so that the first row of the Vandermonde matrix was included
in the row index set of H′, either both H and H′ are singular or both are non-singular; more
specifically, the determinant of H is just a non-zero multiple of that of H′. This will be useful in
narrowing down the submatrices that need to be tested for singularity to determine if the matrix is
super-regular.
Lemma 2. Over the field Fq, for any r, k, ℓ such that ℓ ≤ min(r, k), for any k × r Vandermonde
matrix Vk(ξ) with (ξi)

r
i=1 ∈ (F×

q )
r, the submatrix H := Vk(ξ)I×J defined by I := {α1, . . . , αℓ} ⊆

[k] and J := {β1, . . . , βℓ} ⊆ [r], where αi < αj for all i < j, is non-singular if and only if the
submatrix H′ := Vk(ξ)I′×J defined by I ′ := {1, α2 − (α1 − 1), . . . , αℓ − (α1 − 1)} ⊆ [k] and J
is non-singular.

Proof. Provided in ??.

We now utilize the Schwartz–Zippel lemma in a probabilistic argument for the existence of a
super-regular Vandermonde matrix given a sufficiently large field size. This, in effect, establishes
an upper bound on the minimum field size required for the existence such matrices.
Theorem 3. Over the field Fq, for any r, k, if q > 1 +

(
k
2

)∑r
ℓ=2

(
r
ℓ

)(
k−2
ℓ−2

)
∈ O(kr), then there

must exist scalars (ξi)ri=1 ∈ (F×
q )

r such that the k× r Vandermonde matrix Vk(ξ) is super-regular.
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Proof. Provided in ??.
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Chapter 4

Low Field Size Constructions

In this section, we find several new families of explicit constructions of systematic MDS access-
optimal convertible codes in the merge regime over low field sizes. Specifically, we provide
explicit constructions of (nI, kI;nF, kF = λkI) convertible codes where λ ≥ 2 over fields Fq

of characteristic 2 for all parameters such that rF = rI ≤ 3 and kF < q. In a related result for
general prime power fields Fq where q = pw, we provide constructions of (nI, kI;nF, kF = λkI)
convertible codes where λ ≥ 2 for all parameters such that rF = rI ≤ 3 and kF < w. We do this
by providing constructions of k× 3 super-regular Vandermonde matrices given a sufficiently large
field size: q > k for finite fields of characteristic 2 (Theorem 4) and q > pk for general prime
power fields (Theorem 5). These matrices serve as the parity matrices for the systematic MDS
codes that underlie the aforementioned convertible codes. As every submatrix of a super-regular
matrix is also super-regular, a valid parity matrix for 3 parities gives us one for any fewer than 3
parities as well.

We start with a lemma that builds on the intuition to choose primitive elements of the finite
field for the scalars of the super-regular Vandermonde parity matrix.
Lemma 3. Over the field Fq, for all k < q, given any primitive element θ ∈ Fq, given 2 ≤ e ≤ q−1
such that e, e − 1 ⊥ q − 1, the k × 3 Vandermonde matrix Vk(1, θ, θ

e) has no singular 2 × 2
square submatrices.

Proof. Provided in ??.

Next, we introduce the idea of field automorphisms into our construction and choice of scalars,
in particular as automorphisms are order preserving maps. Recall some key properties of field
automorphisms from §2.3.
Lemma 4. Over the field Fq where q = pw, for all k < q, given any primitive element θ ∈ Fq and
nontrivial σ ∈ Aut(Fq) with fixed field Fp, the k × 3 Vandermonde matrix Vk(1, θ, σ(θ)) has no
2× 2 singular square submatrices.

Proof. First, recall that Aut(Fq) is a group generated by the Frobenius automorphism, or the
map σ : x → xp, and thus any nontrivial element σ ∈ Aut(Fq) is of the form σ(x) = xpn for
some 1 ≤ n < w. It follows that p ≤ pn < pw = q, and because q ≡ 0 mod p, q − 1 ̸≡ 0
mod p and clearly pn ⊥ q − 1. Next, see that if σ has fixed field Fp, this can only occur if
p1(x) = xpn − x, and consequently p2(x) = xpn−1 − 1, have no roots in Fq outside of Fp. This
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implies that pn − 1 ⊥ q − 1, and thus we can apply Lemma 3 to get that this matrix has no 2× 2
singular submatrices.

For the same construction of Vandermonde matrices as in Lemma 4, we next consider its 3× 3
square submatrices and establish the necessary and sufficient conditions under which they are
singular. We are able to show a significantly tighter end result for fields of characteristic 2 in
particular, but a lot of the arguments used apply to all finite fields as well. Thus, we start with an
intermediate result using the shared ideas.
Lemma 5. Over the field Fq where q = pw, for all k < q, given any primitive element θ ∈ Fq and
nontrivial σ ∈ Aut(Fq) with fixed field Fp, the k × 3 Vandermonde matrix Vk(1, θ, σ(θ)) has a
3× 3 singular square submatrix if and only if ∃e1, e2 ∈ [k − 1] and c1, c2 ∈ F×

p such that e1 < e2
and {1, θ, σ(θ)} are all roots of the polynomial f(x) = c1 + c2x

e1 + xe2 .

Proof. Provided in ??.

We now arrive at the first of our major results from this section on fields of characteristic 2.
Theorem 4. Over the field Fq where q = 2w, for all k < q, given any primitive element θ ∈ Fq

and a non-trivial automorphism σ ∈ Aut(Fq) with fixed field F2, the k × 3 Vandermonde matrix
Vk(1, θ, σ(θ)) is super-regular.

Proof. First, note that every 1× 1 submatrix of Vk(1, θ, σ(θ)) is non-singular as every element is
a power of a nonzero element of Fq. Next, by Lemma 4, every 2× 2 submatrix of Vk(1, θ, σ(θ)) is
also non-singular. Finally, assume for sake of contradiction that Vk(1, θ, σ(θ)) has a singular 3× 3
square submatrix. Then by Lemma 5, ∃e1, e2 ∈ [k − 1] and c1, c2 ∈ F×

2 such that {1, θ, σ(θ)} are
all roots of the polynomial f(x) = c1 + c2x

e1 + xe2 . However, this implies c1 = c2 = 1, but then
f(1) = 1 + 1 + 1 = 1, contradicting the fact that 1 is a root of f . Therefore, every 3× 3 square
submatrix is also non-singular and Vk(1, θ, σ(θ)) is super-regular, as desired.

Using this result and the Frobenius automorphism, which is known to have fixed field Fp over
any finite extension K/Fp [4], we show a family of constructions of super-regular Vandermonde
matrices for all fields of characteristic 2. This is of particular interest as they are the most efficient
choice for the representation of data in machines and on storage devices. We also give results
specific to the field F256, which is most commonly used in practice.
Corollary 1. Over the field Fq where q = 2w, for all k < q, given any primitive element θ ∈ Fq,
the k × 3 Vandermonde matrix Vk(1, θ, θ

2) is super-regular.
Corollary 2. Over the field F256, for all k < 256, given any primitive element θ ∈ F256, the k × 3
Vandermonde matrices Vk(1, θ, θ

2), Vk(1, θ, θ
8), Vk(1, θ, θ

32), and Vk(1, θ, θ
128) are super-regular.

Finally, we show an analogous and more general result for super-regular Vandermonde
matrices over any arbitrary field Fq. Note that for fields of characteristic 2, the first result is
stronger as it covers a larger range of possible dimensions of the Vandermonde matrix.
Theorem 5. Over the field Fq where q = pw, for all k ≤ w, given any primitive element θ ∈ Fq

and a non-trivial automorphism σ ∈ Aut(Fq) with fixed field Fp, the k × 3 Vandermonde matrix
Vk(1, θ, σ(θ)) is super-regular.
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Proof. Again, note that every 1× 1 submatrix of Vk(1, θ, σ(θ)) is non-singular as every element
is a power of a nonzero element of Fq. Next, by Lemma 4, every 2× 2 submatrix of Vk(1, θ, σ(θ))
is also non-singular. Finally, assume for sake of contradiction that Vk(1, θ, σ(θ)) has a singular
3× 3 square submatrix. Then by Lemma 5, ∃e1, e2 ∈ [k − 1] and c1, c2 ∈ F×

p such that e1 < e2
and {1, θ, σ(θ)} are all roots of the polynomial f(x) = c1 + c2x

e1 + xe2 . However, as f ∈ Fp[x],
it must be a multiple of the minimum polynomial of θ in Fp[x], which we know is of degree
w ≥ k > e2 = deg(f) as θ is a generator of F×

q , resulting in a contradiction. Thus, every 3× 3
square submatrix is also non-singular and Vk(1, θ, σ(θ)) is super-regular, as desired.

Corollary 3. Over the field Fq where q = pw, for all k ≤ w, given any primitive element θ ∈ Fq,
the k × 3 Vandermonde matrix Vk(1, θ, θ

p) is super-regular.
The final result is one that shows for any binary field Fq, when k ≤ 3, in fact, almost every

3× r Vandermonde matrix for all r < q is super-regular.
Theorem 6. Over the field Fq where q = 2w, for all r < q, any 3× r Vandermonde matrix V3(ξ)
where (ξi)

r
i=1 ∈ Fr

q and the ξi’s are all distinct and nonzero is super-regular.

Proof. Provided in ??.
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